Introduction to Time-Series Forecasting
November 29, 2020 2020-12-03 21:16Introduction to Time-Series Forecasting
Time-series forecasting refers to the use of a machine learning model to predict future values based on previously observed values. Though this definition might somewhat remind you of regression models, time-series forecasting is applied to forecast data that are ordered by time; for example, stock prices by year.

Time-series forecasting is one of the most used applications of Deep Learning in the modern world. Quantitative analysts use it to predict the value of stocks, business professionals use it to forecast their sales, and government agencies use it to forecast resource consumption (energy, water, etc.).
Head on to the next lesson on ‘Getting started with Time-series Data‘ to get started with building our time-series forecasting model using TensorFlow 2.0.