A Bokeh Line plot can be created simply by following these steps:
#line plot Example with BoxAnnotation usage
#Importing necessary modules
from bokeh.models import BoxAnnotation #for highlighting
#Preparing the plot data
#Taking gulcose data from bokeh sample data
from bokeh.sampledata.glucose import data
week=data.loc['2010-10-01':'2010-10-08'] #taking one week data
x=week.index
y=week.glucose
#Create a new plot
p = figure(x_axis_type="datetime", title="Glocose Variation", plot_height=350, plot_width=800) #note to specify x_axis type as datetime to make x axis as datatime
p.xgrid.grid_line_color=None
p.ygrid.grid_line_alpha=0.5
p.xaxis.axis_label = 'Time'
p.yaxis.axis_label = 'GulcoseValue(gm/cc)'
box_left = pd.to_datetime('2010-10-4')
box_right = pd.to_datetime('2010-10-6')
#Configure BoxAnnotation
box = BoxAnnotation(left=box_left, right=box_right,
line_width=1, line_color='black', line_dash='dashed',
fill_alpha=0.2, fill_color='orange')
#Add box layout to figure
p.add_layout(box)
#Add a line renderer
p.line(x,y,line_width=2)
#Show the results
show(p)
OUTPUT:

Scatter Plot:
Scatter plot can be created easily with the following steps:
#Scatter plot Example #Preparing plot data from bokeh.sampledata.autompg import autompg #See relationships between horse power and acceleration x=autompg.hp y=autompg.accel # create a new plot with default tools, using figure p = figure(plot_width=600, plot_height=400,title="Horse Power & Accleration") p.xaxis.axis_label = 'Horse power' p.yaxis.axis_label = 'Acceleration' # add a circle renderer with x and y coordinates, size, color, and alpha p.circle(x,y, size=15, line_color="navy", fill_color="orange", fill_alpha=0.5) # show the results show(p)
OUTPUT:

Bar Chart:
A bar chart can be created easily with the following steps:
#Bar chart Example
#Importing necessary modules
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6
#Preparing data as pandas dataframe
gapminder_regions=pd.read_csv('https://github.com/PHI-Toolkit/docker-jupyterhub/raw/master/.bokeh/data/gapminder_regions.csv')
print(gapminder_regions.head(3))
#Data processing to find how many countries are there in each group
df = gapminder_regions.groupby('Group')['ID'].nunique()
regions=gapminder_regions['Group'].unique()
counts=[]
print(regions)
for x in regions:
counts.append(df[x])
print(counts)
#Set the x_range to the list of categories above
p = figure(x_range=regions, plot_height=250,plot_width=800, title="No.of Countries in Regions")
#Categorical values can also be used as coordinates
p.vbar(x=regions, top=counts, color=Spectral6,width=0.9)
#Set some properties to make the plot look better
p.xgrid.grid_line_color = None
p.y_range.start = 0
show(p)
OUTPUT:
Country Group ID 0 Angola Sub-Saharan Africa AO 1 Benin Sub-Saharan Africa BJ 2 Botswana Sub-Saharan Africa BW ['Sub-Saharan Africa' 'South Asia' 'Middle East & North Africa' 'America' 'Europe & Central Asia' 'East Asia & Pacific'] [50, 8, 21, 52, 66, 46]

#Example of Stacked bar chart
from bokeh.palettes import GnBu3, OrRd3
years = ['2017', '2018', '2019']
fashion_items=['Jeans','Bags','Shoe','Shirt','Belt']
exports = {'fashion_items' : fashion_items,
'2017' : [10, 13, 22, 33, 22],
'2018' : [53, 36, 45, 25, 45],
'2019' : [34, 28, 45, 45, 54]}
imports = {'fashion_items' : fashion_items,
'2017' : [-20,-15 , -28, -38, -29],
'2018' : [-60, -39, -50, -30, -45],
'2019' : [-38, -29, -49, -49, -59]}
p = figure(y_range=fashion_items, plot_height=250,plot_width=800, x_range=(-500, 500), title="Fashion items import/export, by year")
p.hbar_stack(years, y='fashion_items', height=0.9, color=GnBu3, source=ColumnDataSource(exports),
legend_label=["%s exports" % x for x in years])
p.hbar_stack(years, y='fashion_items', height=0.9, color=OrRd3, source=ColumnDataSource(imports),
legend_label=["%s imports" % x for x in years])
p.y_range.range_padding = 0.1
p.ygrid.grid_line_color = None
p.legend.location = "center_left"
show(p)
OUTPUT:

#Mixed bar chart Example
from bokeh.models import FactorRange
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
years = ['2015', '2016', '2017']
data = {'fruits' : fruits,
'2015' : [2, 1, 4, 3, 2, 4],
'2016' : [5, 3, 3, 2, 4, 6],
'2017' : [3, 2, 4, 4, 5, 3]}
# this creates [ ("Apples", "2015"), ("Apples", "2016"), ("Apples", "2017"), ("Pears", "2015), ... ]
x = [ (fruit, year) for fruit in fruits for year in years ]
counts = sum(zip(data['2015'], data['2016'], data['2017']), ()) # like an hstack
source = ColumnDataSource(data=dict(x=x, counts=counts))
p = figure(x_range=FactorRange(*x), plot_height=250, title="Fruit Counts by Year")
p.vbar(x='x', top='counts', width=0.9, source=source)
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
show(p)
OUTPUT:

Pie Chart:
Pie chart can be created easily with following steps:
#Importing necessary modules
from math import pi
from bokeh.io import output_file, show
from bokeh.palettes import Spectral6
from bokeh.plotting import figure
from bokeh.transform import cumsum
#Data preparation for plot
gapminder_regions=pd.read_csv('https://github.com/PHI-Toolkit/docker-jupyterhub/raw/master/.bokeh/data/gapminder_regions.csv')
df = gapminder_regions.groupby('Group')['ID'].nunique()
data = pd.Series(df).reset_index(name='value').rename(columns={'Group':'Regions'})
print(data)
data['angle'] = data['value']/data['value'].sum() * 2*pi
data['color'] = Spectral6
#Create necessary figure
p = figure(plot_height=350, title="World Regions by Countries", toolbar_location=None,
tools="hover", tooltips="@Regions: @value", x_range=(-0.5, 1.0))
#Create wedge for defining pie chart
p.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend_field='Regions', source=data)
p.axis.axis_label=None
p.axis.visible=False
p.grid.grid_line_color = None
show(p)
OUTPUT:
Regions value 0 America 52 1 East Asia & Pacific 46 2 Europe & Central Asia 66 3 Middle East & North Africa 21 4 South Asia 8 5 Sub-Saharan Africa 50

Do you want to learn Python, Data Science, and Machine Learning while getting certified? Here are some best selling Datacamp courses that we recommend you enroll in: